Asymptotics for the Transformation Kernel Density Estimator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data

Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...

متن کامل

Some thoughts on the asymptotics of the deconvolution kernel density estimator

Via a simulation study we compare the finite sample performance of the deconvolution kernel density estimator in the supersmooth deconvolution problem to its asymptotic behaviour predicted by two asymptotic normality theorems. Our results indicate that for lower noise levels and moderate sample sizes the match between the asymptotic theory and the finite sample performance of the estimator is n...

متن کامل

Consistency of the kernel density estimator

Various consistency proofs for the kernel density estimator have been developed over the last few decades. Important milestones are the pointwise consistency and almost sure uniform convergence with a fixed bandwidth on the one hand and the rate of convergence with a fixed or even a variable bandwidth on the other hand. While considering global properties of the empirical distribution functions...

متن کامل

Using Kernel Density Estimator in Nonlinear Mixture

Generally, blind separation of sources from their nonlinear mixtures is rather difficult. This nonlinear mapping, constituted by unsupervised linear mixing followed by unknown and invertible nonlinear distortion, is found in many signal processing cases. We propose using a kernel density estimator incorporated within an equivariant gradient algorithm to separate the nonlinear mixed sources. The...

متن کامل

An Empirical Bayesian Kernel Density Estimator

Often times there is a need to infer the true underlying probability based on the observations, such as in, including but not limited to, data-mining, optimizing the process control parameters etc., Histograms, very rudimentary empirical density estimators, divide the whole data range into either equal or unequal sub intervals (bins) and then obtain the frequency of occurrence of each bin. They...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1995

ISSN: 0090-5364

DOI: 10.1214/aos/1176324705